Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics.

نویسندگان

  • Baharak Sajjadi
  • A R Abdul Aziz
  • Shaliza Ibrahim
چکیده

The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OptimizingDifferent Angles of Venturi in Biodiesel Production Using CFD Analysis

The purpose of this paper is to find the optimal geometry of Venturi for the production of biodiesel by hydrodynamic cavitation. Intensive methods such as hydrodynamic cavitation eliminate the limitation of mass transfer in the transesterification reaction. In this paper, a venturi design was developed to create cavitation in biodiesel production. The most important property of ven...

متن کامل

Ultrasound-Assisted Biodiesel Production in microreactors

The ultrasound-assisted (UA) soybean oil methanolysis using KOH as a catalyst was studied at different reaction conditions in a microreactor. Box–Behnken experimental design, with three variables, was performed and the effects of three reaction variables i.e. reaction temperature, catalyst concentration and the methanol-to-oil molar ratio on fatty acid methyl ester (FAME) yield were evaluated b...

متن کامل

Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil

In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...

متن کامل

Acid and Base Catalyzed Transesterification of Animal Fats to Biodiesel

The present study has been focused on the acid and base transesterification of animal fats (dairy cow and beef) to produce biodiesel by varying process parameters such as catalyst amount, catalyst nature, reaction time and temperature. The maximum biodiesel yield after acid catalysis was 94.1 ± 2.43 and 98.4 ± 2.3 percent for dairy cow and beef t...

متن کامل

Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes

A comparative study of biodiesel production from waste cooking oil using sulfuric acid (Two-step) and microwaveassisted transesterification (One-step) was carried out. A two-step transesterification process was used to produce biodiesel (alkyl ester) from high free fatty acid (FFA) waste cooking oil. Microwave-assisted catalytic transesterification using BaO and KOH was evaluated for the effica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ultrasonics sonochemistry

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015